Using their machine learning model, the researchers found that in the peak of the Antarctic summer in January, over half (57%) of all meltwater on Antarctica’s ice shelves is held in slush, with the remaining 43% in meltwater lakes.
“This slush has never been mapped on a large scale across all of Antarctica’s large ice shelves, so over half of all surface meltwater has been ignored until now,” said Dell. “This is potentially significant for the hydrofracture process, where the weight of meltwater can create or enlarge fractures in the ice.”
Meltwater affects the stability of the floating ice shelves that fringe the Antarctic coastline. As the climate warms and melt rates in Antarctica increase, meltwater – whether in the form of lakes or slush – can get into cracks on the ice, causing the cracks to get bigger. This can cause fractures in the ice shelf, and could cause vulnerable ice shelves to collapse, which in turn would allow inland glacier ice to spill into the ocean and contribute to sea level rise.
“Since slush is more solid than meltwater, it won’t cause hydrofracture in the same way that water from a lake does, but it’s definitely something we need to consider when attempting to predict how or whether ice shelves will collapse,” said Willis.
In addition to the potential implications of slush on hydrofracture, it also has a large effect on melt rates. Since slush and lakes are less white than snow or ice, they absorb more heat from the sun, causing more snowmelt. This extra melt is currently unaccounted for in climate models, which may lead to underestimates in projections of ice sheet melting and ice shelf stability.
“I was surprised that this meltwater was so poorly accounted for in climate models,” said Dell. “Our job as scientists is to reduce uncertainty, so we always want to improve our models so they are as accurate as possible.”
“In future, it’s likely that places in Antarctica that currently don’t have any water or slush will start to change,” said Willis. “As the climate continues to warm, more melting will occur, which could have implications for ice stability and sea level rise.”
The research was supported in part by the European Space Agency and the Natural Environment Research Council (NERC), part of UK Research and Innovation (UKRI).